DWA Set of Rules

Guideline DWA-M 512-1E
Sealing Systems in Hydraulic Engineering
Part 1: Earthwork Structures

February 2012

Dichtungssysteme im Wasserbau – Teil 1: Erdbauwerke
DWA Set of Rules

Guideline DWA-M 512-1E
Sealing Systems in Hydraulic Engineering
Part 1: Earthwork Structures

February 2012

Dichtungssysteme im Wasserbau – Teil 1: Erdbauwerke

Joint Publication elaborated by
German Port Technology Association (HTG),
German Geotechnical Society (DGGT),
German Association for Water, Wastewater and Waste (DWA).
The German Association for Water, Wastewater and Waste (DWA) is strongly committed to the development of secure and sustainable water and waste management. As a politically and economically independent organisation it is professionally active in the field of water management, wastewater, waste and soil protection.

In Europe DWA is the association with the largest number of members within this field. Therefore it takes on a unique position in connection with professional competence regarding standardisation, professional training and information. The approximately 14,000 members represent specialists and executives from municipalities, universities, engineering offices, authorities and companies.

Imprint

Publisher and marketing:
DWA German Association for Water, Wastewater and Waste
Theodor-Heuss-Allee 17
53773 Hennef, Germany
Tel.: +49 2242 872-333
Fax: +49 2242 872-100
E-Mail: info@dwa.de
Internet: www.dwa.de

Translation:
Helga Schlag, Bottrop, Germany
Revised, Howard Murray, Egelsbach, Germany

Printing (English version):
Siebengebirgsdruck, Bad Honnef

ISBN:
978-3-944328-46-1(Print)
978-3-88721-346-6 (E-Book)

Printed on 100 % recycled paper

© DWA Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V., Hennef, Germany 2016
German Association for Water, Wastewater and Waste

All rights, in particular those of translation into other languages, are reserved. No part of this Guideline may be reproduced in any form – by photocopy, digitalisation or any other process – or transferred into a language usable in machines, in particular data processing machines, without the written approval of the publisher.
Foreword

Based on a survey carried out among the professional panels of the technical/scientific associations concerned

- Deutsche Vereinigung für Wasserwirtschaft, Abwasser and Abfall e.V. (DWA)
- Deutsche Gesellschaft für Geotechnik e.V. (DGGT)
- Hafentechnische Gesellschaft e.V. (HTG)

and in the light of the technological advances and new product developments that have been taking place in the construction industry, it was found necessary to revise urgently the following DVWK Guidelines:

- No. 215/1990: Dichtungselemente im Wasserbau (Sealing Elements in Hydraulic Engineering)
- No. 223/1992: Asphaltdichtungen für Talsperren und Speicherbecken (asphalt sealing systems for dams and reservoirs)

In response thereto, the DWA-technical committee/working group ‘Dichtungssysteme im Wasserbau’ (sealing systems in hydraulic engineering) was established in July 2002, to act as Working Group WW-7 within the DWA under joint chairmanship with the DGGT Working Group DWA-AK 5.4, working in parallel and in conjunction with the various competent committees of the HTG. This approach was chosen to take into account the partly overlapping fields of activities of DWA, DGGT, and HTG. The new technical committee started work immediately with two DWA working groups:

- DWA-Arbeitsgruppe WW-7.1 “Internal / subsoil sealing systems" (Chair: Dr.-Ing. Frank Kleist)
- DWA-Arbeitsgruppe WW-7.2 "Surface sealing systems" (Chair: Dipl.-Ing. Petra Fleischer)

Both working groups dealt with sealing systems in earthwork structures. The results are summarised in this Guideline DWA-M 512-1 ‘Sealing Systems in Hydraulic Engineering – Part 1: Earthwork Structures’. This covers surface- and internal-sealing systems for earthwork structures in hydraulic engineering as they are applied in practice. There is no need to revise the section of the Guideline DVWK 225/1992 (‘Anwendungen von Kunststoffdichtungsbahnen im Wasserbau und für den Grundwasserschutz’) which deals with groundwater protection and landfill capping systems, since new Guidelines have been published in the meantime.

Sealing systems on solid structures are treated in DWA Working Group WW-7.4 (Chair: Dipl.-Ing. Sabine Mayer). The results of this Working Group have been published in the Guideline DWA-M 512-2 “Dichtungssysteme im Wasserbau” (’Sealing Systems in Hydraulic Engineering – Part 2: Concrete (solid) Structures’) (Draft June 2015).

DWA Working Group WW-7.3 (Chair: Dr.-Ing. Dirk Heyer) – set up in response to the catastrophic floods of 2002 – completed its work with the publication of the DWA-Topics ‘Dichtungssysteme in Deichen (Sealing Systems in Dikes) in 2005.

Convenors and chairpersons would like to thank all members of DWA-Working Group WW-7 for their commitment and voluntary work, in particular Dipl.-Ing. Christian Schmutterer for his editorial and organisational support of the expert committee’s work, and they are pleased to present the new Guideline to the specialist community. The financial support of the HTG has made it possible to rapidly complete the considerable number of illustrations and figures.

Dresden/Espelkamp, January 2012

Prof. Dr.-Ing. H.-B. Horlacher (Chairman for DWA)

Prof. Dr.-Ing. G. Heerten (Chairman for DGGT/HTG)

Previous editions

DVWK-M 215/1990
DVWK-M 225/1992
Authored by

This Guideline has been prepared by DWA-Working Groups WW-7.1 ‘Internal/subsoil sealing systems’ and WW-7.2 ‘Surface sealing systems’ of Technical Committee WW-7 ‘Sealing Systems in Hydraulic Engineering’.

The members listed hereunder have participated in the preparation of Guideline DWA-M 512-1:

BIELITZ, Eckehard
Dipl.-Ing., Landestalsperrenverwaltung des Freistaates Sachsen, Pirna

BREITENSTEIN, Jens
Dipl.-Ing., RMD Wasserstraßen GmbH, München

DRESSLER, Joachim
Dr.-Ing., Ingenieurbüro EDR GmbH, München

EGLOFFSTEIN, Thomas
Dr. Dipl.-Geol., ICP Ingenieurgesellschaft Prof. Czurda u. Partner mbH, Karlsruhe

FLEISCHER, Petra
Dipl.-Ing., Bundesanstalt für Wasserbau, Karlsruhe

GRÖGER, Manfred
Dipl.-Ing., RMD Wasserstraßen GmbH, München

HACKMANN, Gerhard
Dipl.-Ing., Concrete-von Essen GmbH & Co. KG, Rastede

HEERTEN, Georg
Prof. Dr.-Ing., NAUE GmbH & Co. KG, Espelkamp

HEYER, Dirk
Dr.-Ing., TU München, Zentrum Geotechnik, München

HORLACHER, Hans-Bernd
Univ.-Prof. Dr.-Ing. habil., TU Dresden, Institut für Wasserbau und Technische Hydromechanik, Dresden

KLEIST, Frank
Dr.-Ing., Ingenieurbüro SKI GmbH + Co. KG, München

MARTINI, Jörg
Dipl.-Ing., Josef Möbius Baugesellschaft, Hamburg

MAYER, Sabine
Dipl.-Ing., Bayerisches Landesamt für Umwelt, München

SCHMAUTZ, Markus
Dr.-Ing., RMD Wasserstraßen GmbH, München

SCHMUTTERER, Christian
Dipl.-Ing., Landestalsperrenverwaltung des Freistaates Sachsen, Pirna

SCHWARZ, Wolfgang
Dr.-Ing., Bauer Spezialtiefbau GmbH, Schrobenhausen

STIEGELER, Roland
Dipl.-Ing., Zentrum Geotechnik, TU München, München

THYSEN, Heinz-Jakob
Dipl.-Ing., Wasser- und Schifffahrtsamt Rheine, Rheine

TONNIS, Barbara
Dr.-Ing., Hydroprojekt Ingenieurgesellschaft mbH, Weimar

WERTH, Katja
Dipl.-Ing., BBG Bauberatung Geokunststoffe GmbH & Co. KG, Espelkamp

Part-time:

BEZZO, Michael
Dipl.-Ing., Tyssen Krupp GIT Bautechnik GmbH, Frankfurt

FRANKE, Jörg
Dr.-Ing., IGB Ingenieurgesellschaft mbH, Hamburg

FRÜKE, Rudolf
Dipl.-Ing., Wasser- und Schifffahrtsdirektion Mitte, Hannover

SCHMID, Reinhard
Dr.-Ing., STRABAG Tiefbau GmbH, Köln

TRENTMANN, Justus
Dipl.-Ing., gewatech Grund- und Wasserbau GmbH & Co. KG, Osnabrück

Responsible for the project in the DWA National Head Office:

SCHRENK, Georg
Dipl.-Geogr., Hennef
Abteilung Wasser- und Abfallwirtschaft
Contents

Foreword ... 3

Authored by .. 4

Contents .. 5

List of Figures .. 10

List of Tables .. 11

User Notes .. 12

1 Scope .. 12

2 Normative References ... 12

3 Abbreviations and Symbols ... 12

3.1 Abbreviations .. 12

3.2 Symbols .. 13

4 General Notes on Sealing Systems Commonly used in Hydraulic Engineering 14

4.1 Introduction ... 14

4.2 Requirements on Sealing Systems .. 14

4.3 Connections ... 15

4.4 Excess Hydraulic Pressure below and behind the Sealing System 15

4.5 Inspection and Monitoring .. 15

4.6 Control Systems .. 17

5 Surface-sealing Systems in Earthwork Structures .. 17

5.1 Asphalt Surface-sealing Systems .. 17

5.1.1 General Description .. 17

5.1.2 Field of Application .. 17

5.1.3 Construction Materials .. 18

5.1.4 Techniques/Methods of Installation .. 18

5.1.4.1 Installation in the Dry .. 18

5.1.4.2 Underwater Installation Procedure .. 18

5.1.5 Foundation/Subsoil .. 18

5.1.6 Design .. 18

5.1.7 Structural Design .. 19

5.1.8 Quality Control .. 21

5.1.9 Durability .. 21

5.1.10 Maintenance/Refurbishment ... 21

5.1.11 Examples ... 22

5.2 Concrete Surface-sealing systems .. 23

5.2.1 General Description .. 23

5.2.2 Fields of Application .. 23

5.2.3 Construction Materials .. 23

5.2.4 Techniques/Methods of Installation .. 24

5.2.4.1 Installation in the Dry .. 24

5.2.4.2 Underwater Installation Procedure .. 24

5.2.5 Special Processes: Concrete Mattresses .. 24
DWA-M 512-1

6.2.4.2 Field of Application... 61
6.2.4.3 Construction Materials ... 61
6.2.4.4 Environmental Compatibility ... 62
6.2.4.5 Technique/Method of Installation ... 63
6.2.4.6 Foundation/Subsoil .. 64
6.2.4.7 Design Aspects .. 65
6.2.4.8 Structural Design ... 65
6.2.4.9 Quality Assurance ... 65
6.2.4.10 Durability .. 65
6.2.4.11 Maintenance/Refurbishment ... 65
6.2.4.12 Examples .. 66
6.2.5 Jet Grouting Procedure ... 67
6.2.5.1 General Description ... 67
6.2.5.2 Field of Application ... 67
6.2.5.3 Construction Materials ... 67
6.2.5.4 Technique/Method of Installation ... 68
6.2.5.5 Foundation Soil/Subsoil ... 69
6.2.5.6 Design Aspects .. 69
6.2.5.7 Structural Design ... 71
6.2.5.8 Quality Assurance ... 71
6.2.5.9 Durability .. 71
6.2.5.10 Maintenance/Refurbishment ... 71
6.2.5.11 Examples .. 72
6.2.6 Diaphragm Walls .. 73
6.2.6.1 General Description ... 73
6.2.6.2 Field of Application ... 73
6.2.6.3 Construction Materials ... 73
6.2.6.4 Technique/Method of Installation ... 74
6.2.6.5 Foundation Soil/Subsoil ... 78
6.2.6.6 Design Aspects .. 78
6.2.6.7 Structural Design ... 78
6.2.6.8 Quality Assurance ... 79
6.2.6.9 Durability .. 79
6.2.6.10 Maintenance/Refurbishment ... 79
6.2.6.11 Examples .. 79
6.2.7 Thin Diaphragm Walls ... 80
6.2.7.1 General Description ... 80
6.2.7.2 Field of Application ... 81
6.2.7.3 Construction Materials ... 81
6.2.7.4 Technique/Method of Installation ... 81
6.2.7.5 Foundation Soil/Subsoil ... 83
6.2.7.6 Design Aspects .. 84
6.2.7.7 Structural Design ... 84
6.2.7.8 Quality Assurance ... 84
6.2.7.9 Durability .. 84
6.2.7.10 Maintenance/Refurbishment ... 85
6.2.7.11 Examples .. 85
6.2.8 Bored Pile Walls .. 87
6.2.8.1	General Description	87
6.2.8.2	Field of Application	87
6.2.8.3	Construction Materials	87
6.2.8.4	Technique/Method of Installation	87
6.2.8.5	Foundation Soil/Subsoil	90
6.2.8.6	Design Aspects	90
6.2.8.7	Structural Design	90
6.2.8.8	Quality Assurance	91
6.2.8.9	Durability	91
6.2.8.10	Maintenance/Refurbishment	91
6.2.8.11	Examples	91
6.2.9	Deep Soil-Grouting Processes	92
6.2.9.1	General Description	92
6.2.9.2	Field of Application	93
6.2.9.3	Construction Materials	93
6.2.9.4	Technique/Method of Installation	93
6.2.9.5	Foundation Soil/Subsoil	95
6.2.9.6	Design Aspects	96
6.2.9.7	Structural Design	96
6.2.9.8	Quality Assurance	96
6.2.9.9	Durability	96
6.2.9.10	Maintenance/Refurbishment	97
6.2.9.11	Examples	97
6.3	Mineral Core Seals	97
6.3.1	General Description	97
6.3.2	Field of Application	99
6.3.3	Construction Materials	99
6.3.4	Techniques/Methods of Installation	99
6.3.5	Foundation/Subsoil	100
6.3.6	Design Aspects	100
6.3.7	Structural Design	100
6.3.8	Quality Assurance	100
6.3.9	Durability	101
6.3.10	Maintenance/Refurbishment	101
6.3.11	Examples	101
6.4	Sheet-pile Walls	101
6.4.1	General Description	103
6.4.2	Field of Application	103
6.4.3	Construction Materials	103
6.4.4	Technique/Installation Method	104
6.4.4.1	Installation Method	104
6.4.4.2	Additional Aids for Wall Insertion	106
6.4.4.3	Installation Tolerances	107
6.4.5	Foundation/Subsoil	107
6.4.6	Design Aspects	107
6.4.7	Structural Design	108
6.4.8	Quality Assurance	108
6.4.9	Durability	108
List of Figures

Figure 1: Example of a single-layer asphalt surface sealing (system sketch) ... 20
Figure 2: System sketch of a structure of a double-layer asphalt surface sealing system with intermediate bearing and levelling courses (also serving as drain and filter layer) .. 20
Figure 3: Example of the horizontal connection of an asphalt surface sealing to a massive (usually concrete) structure using expansion elements of metal strips .. 22
Figure 4: Structural design of the sealing system installed at the Dürrloh pumped-storage plant 23
Figure 5: Concrete mattresses connected by sewing the woven fabrics (schematic sketch) .. 25
Figure 6: Sequence of filling operations ... 25
Figure 7: Different joint types, upstream face of a CFRD dam ... 26
Figure 8: Joint types with joint seals .. 27
Figure 9: Dummy joint .. 27
Figure 10: Butt joint .. 27
Figure 11: Schematic of a concrete abutment installed in a power-station canal .. 27
Figure 12: Typical cross-section of Mittlerer-Isar-Kanal .. 29
Figure 13: Bridge-type paver in operation .. 29
Figure 14: Longitudinal overlap of a bentonite/sand-mat composite system designed for underwater installation 31
Figure 15: Simplified schematic of foundation soil with sealing concept ... 34
Figure 16: Double seam (overlap seam) with test duct and deposition seam according to MÜLLER (2001) 35
Figure 17: Standard design of a single-layer sealing system with GMB and geotextile or granular support and protection layer ... 37
Figure 18: Anchorage of GMB in a trench on the embankment crest .. 37
Figure 19: Connection to structures with clamped connection or cast-in plastic section .. 38
Figure 20: Reprofiled surface of Lober-Leine-Kanal and installation of GMBs ... 40
Figure 21: Placement of first cover layer on the nonwoven protective layer and connection of the GMB to a bridge structure ... 40
Figure 22: Example of connection between sealing and structural element (e.g., sheet-pile wall) – lengthening of the contact area as in EAO 2002 .. 44
Figure 23: Example connection between sealing and unyielding structure – sloped contact area 44
Figure 24: Design detail of the three-zone dike on the River Elbe .. 46
Figure 25: Schematic of a hard sealing system with armour stones fully grouted with an impervious grouting material .. 46
Figure 26: Plan of mooring place ... 50
Figure 27: Cross section of bed stabilisation with new lining and connection zone to existing canal-sealing system 50
Figure 28: Connection of a core seal to a cut-off wall with inspection gallery ... 52
Figure 29: Cross section of dam, Lauenstein flood-retention basin ... 54
Figure 30: Limits of application of injection processes compared to jet-grouting processes .. 62
Figure 31: Sleeved pipe, grouting pipe with single valve .. 63
Figure 32: Various shapes of jet-grouting columns ... 70
Figure 33: Longitudinal section of dam structure ... 66
Figure 34: Working steps of the jet-grouting process for a cut-off wall .. 68
Figure 35: Cross-section of the Brombach dam ... 72
Figure 36: Basic sequence of process steps for diaphragm wall construction by the pilger method 75
Figure 37: Excavation equipment: rope grab, hydraulic grab, diaphragm-wall cutter .. 75

February 2012
Guideline
Guideline

List of Tables

Table 1: Influence of base material on the slurry properties ... 56
Table 2: Influence of base materials on the properties of the hardened mixture ... 57
Table 3: Jet-grouted column diameters as a function of soil type .. 71
Table 4: Plant capability for rope-grab trenching .. 76
Table 5: Plant capability for cable-suspended hydraulic-grab trenching .. 76
Table 6: Plant capability for trenching work with Kelly grab ... 76
Table 7: Plant capability for trench cutting ... 77
Table 8: Plant details for conventional slim wall construction ... 82
Table 9: Plant details for high-pressure jet-assisted slim diaphragm-wall construction 82
Table 10: Vibratability of slurry-wall beam (SCHROLL & KRAMER 1981) .. 84
Table 11: Grab drilling equipment for bored pile walls .. 89
Table 12: Rotating drilling units for bored pile walls .. 89
Table 13: Typical specifications for construction equipment (MIP process) .. 93
Table 14: Typical specifications for construction plant (CSM process) ... 95
Table 15: Main barrage at Zeulenroda, data on fill placement, compaction and quality testing 102
Table 16: Technical data on impact hammers ... 105
Table 17: Technical data on vibrators (examples) ... 105
Table 18: Technical data on leader-guided presses (examples) ... 106
Table 19: Technical data on free-riding presses (examples) ... 106
Table 20: Drivability of different soil types ... 107

DWA-M 512-1

February 2012
1 Scope

This Guideline deals exclusively with sealing systems designed for application in hydraulic engineering. It is directed towards those specialists of engineering offices, construction firms and water-management authorities responsible for the design, construction and maintenance of hydraulic engineering plant and structures, or their components.

It covers surface- and internal-sealing systems for soil structures in hydraulic engineering as they are applied in practice. Described are surface and internal sealing systems used in earthwork structures, including asphalt and concrete sealing systems, geosynthetic clay liners, mineral sealings, geomembranes, fully grouted riprap, sheet pile walls and internal sealing systems made of hydraulically bound sealing-wall materials (concrete, plastic concrete, injections, jet grouting, diaphragm walls, thin slurry diaphragm walls, soil-grouting processes).

For each of these sealing systems, a summary is given of possible applications, construction materials, methods of placement, design principles, quality assurance and maintenance requirements, and reference is made to the latest developments and their applications. Surface-sealing systems for concrete structures are covered separately in Part 2 of the Guideline.

The recommendations given can be used as a basis for the pre-design and initial planning of a sealing system. For subsequent design, the relevant regulations must be consulted.

2 Normative References

On account of the number of sealing systems covered here, reference is made to a large number of regulations. The relevant regulations are referred to in the individual sections, and these regulations are listed in Appendix A.

3 Abbreviations and Symbols

3.1 Abbreviations

<table>
<thead>
<tr>
<th></th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>AG</td>
<td>Client</td>
</tr>
<tr>
<td>AN</td>
<td>Contractor</td>
</tr>
<tr>
<td>BAM</td>
<td>Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Testing and Research)</td>
</tr>
<tr>
<td>BAW</td>
<td>Bundesanstalt für Wasserbau (Federal Waterways Engineering and Research Institute)</td>
</tr>
<tr>
<td>CE</td>
<td>Communauté Européenne; CE Conformity Marking. Products bearing the CE logo conform with all health, safety and environmental-protection requirements set up by EU Law. This means any product with this marking can be sold and used throughout all EU countries.</td>
</tr>
<tr>
<td>CEN</td>
<td>Comité Européen de Normalisation, European Committee for Standardisation</td>
</tr>
</tbody>
</table>