DWA Set of Rules

Standard DWA-A 161E
Static Calculation of Jacking Pipes

March 2014, corrected version October 2017

Statische Berechnung von Vortriebsrohren
März 2014, korrigierte Fassung Oktober 2017
The German Association for Water, Wastewater and Waste (DWA) is strongly committed to the development of secure and sustainable water and waste management. As a politically and economically independent organisation it is professionally active in the field of water management, wastewater, waste and soil protection.

In Europe DWA is the association with the largest number of members within this field. Therefore, it takes on a unique position in connection with professional competence regarding standardisation, professional training and information. The approximately 14,000 members represent specialists and executives from municipalities, universities, engineering offices, authorities and companies.

The content of the Standard DWA-A 161 and the DVGW code of practice GW 312 is identical.
Foreword

With the second edition of this Standard, the Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall e. V. (German Association for Water, Wastewater and Waste, or DWA for short) and the Deutsche Verein des Gas- und Wasserfaches e. V. (German Association of Gas and Water, or DVGW for short) provide recommendations for devising the structural calculation of jacking pipes. For pipes installed using an open-cut method of construction, the relevant standards and regulations are referred to (e.g. Standard ATV-DVWK-A 127).

The soil mechanics model concepts used in practice up until now have been assessed and adapted to the current state of knowledge. This has resulted in new load models and their effects on jacking pipe calculations. However, not all possible special cases could be recorded that might necessitate further or restricting actions.

Since the appearance of the first edition from January 1990, significant progress has been documented in the trenchless installation of pipes, which is reflected in the revised version of the DWA-A 125/DVGW GW 304 code of practice in tandem with DIN EN 12889. The steerable and non-steerable jacking methods defined there require a differentiated approach to the structural calculation of pipes, made from different types of materials, which also touches on issues of soil mechanics.

Furthermore, the parameters of this Standard have been obtained over the course of several years based on standards and other sources which have now been updated or replaced in some way. This must be considered if the bases of the specific values and calculation methods are to be investigated. It is the user's responsibility to take appropriate account of the particular circumstances of specific cases, important changes to standards and technology and newer discoveries.

Changes

In particular, the following changes have been made from Standard ATV-A 161:1990-01 and advisory leaflet DVGW GW 312:1990-01:

a) Plastics have also been included as piping materials.

b) Authoritative load conditions (influences) have been specified in detail for the steerable and non-steerable processes mentioned in Standard DWA-A 125/DVGW GW 304.

c) The determining of soil characteristics for loose and solid rock has been revised. For adjusting the soil characteristics of a geotechnical report to a particular jacking situation, factors are specified as reference values. Soil characteristics and soil mechanics characteristics, with which soil load continues to be determined according to the silo model, are specified as reference values based on the density and consistency of the soil.

d) To describe the load scenarios, Standard ATV-DVWK-A 127 has been adapted.

e) The minimum cutting force measurement for considering driving forces (previously only controlled for straight-line jacking) has been expanded for curving.

f) Additionally, minimum values for wall thickness/radius ratios have been specified.

g) For the permitted axial forces during jacking, equations were also developed for bending routes, which take account of steering movements and permitted tolerances for the perpendicularity of the pipes' abutting faces.

h) For the pressure transfer rings, recommendations for determining compressive stress/compression behaviour under cyclical loads and typical values for the elasticity moduli of the pressure transfer rings have been specified.

i) For jacking pipes in the solid rock and transition area (loose rock / solid rock), information has been provided for loads transverse to the pipe's axis and the abutment of the pipe.

j) Point loads can occur depending on the type of soil or method of installation. No specific assumptions, mechanical models or influences were specified for point loads. Special considerations should be employed for these as required.

k) For fluid-filled pressure transfer rings the requisite verifications have been compiled.

l) The stability verifications for pipes in a transverse direction have been adapted to the specifications in Standard ATV-DVWK-A 127 with simplifications and supplemented with the verification in an axial direction.

m) The verification of equivalent stress has been expanded for anisotropic materials with different tensile and compressive strengths.
n) The measuring tables for steel pipes have not been kept.

o) The verification against fatigue under loads that are not predominantly static has been revised.

p) Compressive and tensile force-locking connections have been included.

q) The Standard has been adapted to meet the partial safety concept.

r) The horizontal part has been considered for traffic loads.

s) DIN technical report 101 has been taken as a basis for road traffic loads. The previous road traffic loads SLW60, SLW30 and LKW12 do not apply.

t) Dynamic impact coefficients have been specified for rail transport loads (LM 71) in accordance with DIN technical report 101.

u) For the fatigue verification under loads that are not predominantly static, the dynamic stress component may be calculated taking account of the horizontal soil pressure from traffic. The permitted fluctuation range $2\sigma_A$ must be determined for each material using S-N curves. For rail transport loads, the permitted range of fluctuation $2\sigma_A$ must be determined for 1×10^8 load cycles and for 2×10^6 load cycles for other transport loads.

The DWA working group ES-5.5 'Structural Analysis of Drainage Systems – Open Construction Methods' is currently devising a separate standard, DWA-A 127-10, in which the parameters of piping materials for the structural analysis of drains and sewers are defined. Until this Standard appears, Appendix A of this Standard continues to apply. Until Standard DWA-A 127-10 is released, users of this Standard must check whether the stated material parameters are appropriate in each case.

Note
The user is provided with sample calculations for download free of charge on the DWA website in a secure user area ('DWAdirect') at: <http://www.dwa.de/dwadirekt>. You can reach the secure user area by entering your username and password. If you are not yet registered, you can request your authorisation code using the specified link, which will then be sent to you via email.

Earlier editions

Translation with kind support from:

Amiantit Germany GmbH
FBS - Fachvereinigung Betonrohre und Stahlbetonrohre e. V.
Sachverständigenbüro Dr. Hoch

IngSoft GmbH
Saint-Gobain PAM Deutschland GmbH
Steinzeug-Keramo GmbH
Authors

This Standard was created by the DWA working group ES-5.6 ‘Structural Analysis of Drainage Systems – Trenchless Construction Method’ in the DWA technical committee ES-5 ‘Construction’, which consists of the following members:

BECKMANN, Dietmar Dr.-Ing., Bochum
BOHLE, Ulrich Dr.-Ing., Aachen
BRUNE, Peter Dipl.-Ing., Saarbrücken
FALK, Christian Dr.-Ing., Dortmund
FLICK, Karl-Heinz Bau.-Ass., Dipl.-Ing., Cologne (Deputy Speaker)
GRAßMANN, André Dipl.-Ing., Essen
HERBORN, Stephan Dipl.-Ing., Frankfurt (until 2008)
HOCH, Albert Prof. Dr.-Ing., Nuremberg (Speaker until 2004)
KLEIN, Joachim Dr.-Ing., Essen (until 2003)
LEONHARDT, Günther Dr.-Ing., Düsseldorf (Speaker until 2003)
NOWACK, Reinhard Dipl.-Ing., Ehringshausen †
RIPPL, Kurt Dipl.-Ing., Nuremberg
SIELER, Ulrich Dipl.-Ing., Nuremberg
WALLMANN, Ulrich Dipl.-Ing., Bottrop

The following have collaborated as invitees:

GOLLWITZER, Leonhard Dipl.-Ing., Mantel
KONRAD, Günter Dipl.-Ing., Stuttgart
TECKEMEIER, Hartmut Dipl.-Ing., Bonn
VOLLMERING, Lutz Dipl.-Ing., Mochau
WELLMANN, Andreas Dipl.-Ing., Troisdorf

Project supervisor in the DWA head office:

BERGER, Christian Dipl.-Ing., Hennef
Department Water and Waste Management
Contents

Foreword .. 3
Authors .. 5
List of Figures ... 9
List of Tables ... 9

User Notes .. 11

1 Scope .. 11

2 Normative References ... 11

3 Terms, Symbols, Units and Abbreviations .. 15
3.1 Terms .. 15
3.1.1 Influences (see also DIN EN 1990) ... 15
3.1.1.1 Direct Influence ... 15
3.1.1.2 Indirect Influence .. 15
3.1.1.3 Static Influence .. 15
3.1.1.4 Variable Influence .. 15
3.1.1.5 Combination of Influences (Influence Combination) ... 15
3.1.2 Driving Forces ... 15
3.1.3 Load Condition .. 15
3.1.4 Gradient ... 15
3.1.5 Route .. 15
3.1.6 Routing ... 15
3.1.7 Overlap ... 15
3.2 Symbols, Units and Abbreviations .. 16

4 Technical Specifications ... 24
4.1 Installation Conditions ... 24
4.2 Foundation Soil Inspections .. 24
4.3 Types of Soil .. 24
4.4 Soil Properties ... 25
4.5 Pipe Materials .. 28
4.6 Partial Safety Factors for the Component Resistance of Pipe Materials .. 28
4.7 Pressure Transfer Ring ... 28
4.7.1 Wooden Pressure Transfer Ring .. 28
4.7.2 Pressure Transfer Rings from Different Materials ... 28

5 Construction ... 30

6 Influences on the Jacking Pipes .. 30
6.1 Combinations of Influences on Pipes ... 30
6.2 Influences Transverse to the Pipe Axis ... 33
6.2.1 Soil Load and Evenly Distributed Load on the Terrain Surface .. 33
6.2.1.1 General ... 33
6.2.1.2 Load Reduction due to Arching ... 33
6.2.1.3 Excluding the Reduction ... 35
6.2.1.4 Increase of the Soil Load Influence .. 35
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.2.2</td>
<td>Lateral Soil Pressure</td>
<td>35</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Traffic Loads</td>
<td>37</td>
</tr>
<tr>
<td>6.2.3.1</td>
<td>General</td>
<td>37</td>
</tr>
<tr>
<td>6.2.3.2</td>
<td>Road-traffic Loads</td>
<td>37</td>
</tr>
<tr>
<td>6.2.3.3</td>
<td>Railway-traffic Loads</td>
<td>38</td>
</tr>
<tr>
<td>6.2.3.4</td>
<td>Aircraft-traffic Loads</td>
<td>40</td>
</tr>
<tr>
<td>6.2.3.5</td>
<td>Loads from Special Vehicles</td>
<td>40</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Limited Area Loads</td>
<td>41</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Dead Weight</td>
<td>41</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Water Fill up to Pipe Crest</td>
<td>41</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Internal Pressure</td>
<td>41</td>
</tr>
<tr>
<td>6.2.8</td>
<td>External Water Pressure</td>
<td>41</td>
</tr>
<tr>
<td>6.2.9</td>
<td>Lubricant and Proppant Pressure</td>
<td>42</td>
</tr>
<tr>
<td>6.2.10</td>
<td>Annular-gap Grouting</td>
<td>42</td>
</tr>
<tr>
<td>6.2.11</td>
<td>Compressed Air</td>
<td>42</td>
</tr>
<tr>
<td>6.3</td>
<td>Influences along the Pipe Axis due to Jacking Forces</td>
<td>42</td>
</tr>
<tr>
<td>6.3.1</td>
<td>General</td>
<td>42</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Transfer of Longitudinal Forces</td>
<td>42</td>
</tr>
<tr>
<td>6.3.3</td>
<td>Transfer of Transverse Forces</td>
<td>43</td>
</tr>
<tr>
<td>6.4</td>
<td>Influences along the Pipe Axis due to Tensile Forces</td>
<td>43</td>
</tr>
<tr>
<td>6.5</td>
<td>Partial Safety Factors for Influences</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>Cutting Forces from Influences Transverse to the Pipe Axis</td>
<td>44</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td>44</td>
</tr>
<tr>
<td>7.2</td>
<td>Cutting Forces</td>
<td>44</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Vertical Soil Stresses q_{im} from Soil Covering During Jacking</td>
<td>44</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Vertical Soil Stresses q_{im} from Soil Covering After Jacking</td>
<td>45</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Vertical Soil Stresses p_{im} from Traffic</td>
<td>47</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Horizontal Soil Stresses p_{hn} from Traffic</td>
<td>47</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Horizontal Soil Stresses q_{bm} from Soil Covering During Jacking</td>
<td>47</td>
</tr>
<tr>
<td>7.2.6</td>
<td>Horizontal Soil Stresses q_{bm} from Soil Covering After Jacking</td>
<td>47</td>
</tr>
<tr>
<td>7.2.7</td>
<td>Dead Weight</td>
<td>47</td>
</tr>
<tr>
<td>7.2.8</td>
<td>Water Fill up to Pipe Crest</td>
<td>47</td>
</tr>
<tr>
<td>7.2.9</td>
<td>Uplift</td>
<td>48</td>
</tr>
<tr>
<td>7.2.10</td>
<td>Cutting Forces from Water Pressure</td>
<td>48</td>
</tr>
<tr>
<td>7.2.11</td>
<td>Bedding Reaction Pressure</td>
<td>48</td>
</tr>
<tr>
<td>7.3</td>
<td>Minimum Section Forces for the Consideration of Forces Occuring during the Driving of the Pipes</td>
<td>48</td>
</tr>
<tr>
<td>8</td>
<td>Assumptions Regarding Influences Transverse to the Pipe Axis when Jacking in Solid Rock</td>
<td>49</td>
</tr>
<tr>
<td>8.1</td>
<td>General</td>
<td>49</td>
</tr>
<tr>
<td>8.2</td>
<td>Soil Load</td>
<td>49</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Jacking with Support in Solid Rock and Overlay with Loose Soil</td>
<td>49</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Jacking Exclusively in Solid Rock</td>
<td>49</td>
</tr>
<tr>
<td>8.3</td>
<td>Deformation Modulus</td>
<td>51</td>
</tr>
<tr>
<td>8.4</td>
<td>Lateral Pressure Coefficient</td>
<td>51</td>
</tr>
<tr>
<td>8.5</td>
<td>Bedding Angle</td>
<td>51</td>
</tr>
<tr>
<td>9</td>
<td>Measurements Transverse to the Pipe Axis</td>
<td>53</td>
</tr>
<tr>
<td>9.1</td>
<td>General</td>
<td>53</td>
</tr>
<tr>
<td>9.2</td>
<td>Required Verifications</td>
<td>53</td>
</tr>
</tbody>
</table>
9.3 Component Verifications ... 53
 9.3.1 Minimum Wall Thicknesses ... 53
 9.3.2 Minimum Reinforcement ... 56
 9.4 Steadiness Verifications ... 56
 9.4.1 General .. 56
 9.4.2 Deformation Verification .. 56
 9.4.3 Stress-elongation Verifications Transverse to the Pipe Axis 57
 9.4.3.1 General ... 57
 9.4.3.2 Reinforced Concrete ... 57
 9.4.3.3 Vitrified Clay ... 57
 9.4.3.4 UP-GF .. 58
 9.4.3.5 Steel and Ductile Cast Iron .. 58
 9.4.4 Stability Verification ... 59
 9.4.4.1 General .. 59
 9.4.4.2 Verification for Full Pipe Bedding 59
 9.4.4.3 Verification without Pipe Bedding 60
 9.4.5 Fatigue Verification under Cyclic Loads 61
 9.4.5.1 General .. 61
 9.4.5.2 Fatigue Verification for Reinforced Concrete, Concrete, UP-GF, Cast Iron and Vitrified Clay Pipes 63
 9.4.5.3 Fatigue Verification for Steel Pipes 63
 9.4.6 Pipes with (high) internal pressure 63

10 Calculation along the Pipe Axis ... 64
 10.1 Driving Forces .. 64
 10.2 Calculation Fundamentals ... 64
 10.3 Compressive Force Transfer .. 65
 10.4 Compressive and Tensile Force-Locked Pipe Joints 74
 10.5 Tensile Force-Locked Pipe Joints .. 74

11 Interaction Verifications ... 74

12 Buckling Verifications for Strains in an Axial Direction 75
 12.1 Steel Pipes ... 75
 12.2 Plastic Pipes (UP-GF and Thermoplastics) 76

Footnotes for the materials table (Appendix A) 79

Appendix B (informative) Minimum Specifications for the Structural Calculation of Jacking Pipes 81
 Notes and Explanations on the Minimum Specifications for the Structural Calculation of Jacking Pipes 83

Appendix C (normative) Standard Test for Determining the Calculated Material Parameter E_{cal} of Pressure Transfer Rings from Wood and Wood-based Materials .. 85

Appendix D Foundation Soil ... 87
 D.1 (informative) Classification of Loose Rocks – Soil Classification; Group Classification of Soils for Civil Engineering Purposes (as per DIN 18196) ... 87
 D.2 (informative) Geotechnical Report – Requirements of a Geotechnical Report (Subsoil Assessment) for Measuring Jacking Pipes ... 89
 D.2.1 Minimum Specifications ... 89
 D.2.2 Complete Specifications .. 89
 D.2.3 Specifications for a Jacking Pipe in Solid Rock 90

Appendix E (informative) Tensile Forces, Bending Radii and Deviation Capacities .. 91
List of Figures

Figure 1: Load illustration in accordance with Terzaghi (1954)... 34
Figure 2: Reduction factor κ for $K_1 = 0.5$ and $\delta = \psi/2$.. 34
Figure 3: Load illustration for load model 1 (LM1) in accordance with DIN EN 1991-2.. 37
Figure 4: Vertical soil stresses p_z in kN/m² depending on the pipe length L_h; coverings $h = 1$ m to 10 m 38
Figure 5: Spread of the vertical loads from railway traffic; definition of pressure area and area of influence........ 39
Figure 6: Soil stress p resulting from railway-traffic loads ... 40
Figure 7: Load illustrations of the reference aircraft (DAC)... 41
Figure 8: Soil stress p_z resulting from aircraft-traffic loads .. 41
Figure 9: Jacking with support in solid rock and overlay with loose soil... 50
Figure 10: Jacking exclusively in solid rock.. 50
Figure 11: Explanation regarding $m_{q_{0}}$, n_{1a}, n_{1b} and $m_{q_{1}}, n_{1a}$, n_{1b}... 51
Figure 12: Explanation regarding $m_{q_{1}}$, n_{1a} and $m_{q_{2}}, n_{2a}$.. 51
Figure 13: Break-through coefficient α_{0} for the critical external water pressure .. 60
Figure 14a: Vertical soil stresses from traffic load (LM3) p_z in kN/m² at the pipe crest level for all pipes and coverings up to 4 m; h' is composed of the covering height h and the thickness of the road surface h_g 62
Figure 14b: Horizontal soil stresses from traffic load (LM3) p_{th} in kN/m² for all pipes and springing heights h_g up to 4 m, for the soil pressure coefficient $K_p = 0.4$. For other values of K_p, the following applies: $P_{th} = K_p \cdot$ reading value/0.4. ... 62
Figure 15: Calculated value $\phi_{NL} L_R$ based on pipe diameter ... 66
Figure 16: Coefficient κ_{R1} for preventing edge spalling.. 68
Figure 17: Coefficient κ_{R2} for avoiding fractures from splitting tension... 68
Figure 18: Deformation coefficient α_b based on the ratio of the pipe length to the external pipe diameter 70
Figure 19: Material parameter E_{sl} for solid wood (spruce, fir) with a thickness of 20 mm.. 71
Figure 20: Material parameter E_{sl} for particleboard with a thickness of 18 mm ... 71
Figure 21: Material parameter E_{sl} for OSBs with a thickness of 22 mm... 72
Figure 22: Stress ratio $\sigma_{z_{f_{0}}}/\alpha_{Z_f}$ based on joint gap dimension $z_{f}/d_{k_{min}}$ for PTR made from wood or wood-based materials. ... 73
Figure 23: Stress ratio $\sigma_{z_{f_{0}}}/\alpha_{Z_f}$ based on joint gap dimension $z_{f}/d_{k_{min}}$ without PTR.. 73
Figure C.1: Example of a compressive stress/compression diagram of a standard test ... 86
Figure F.1: Load distribution along the pipe when passed over longitudinally .. 96
Figure F.2: Load distribution transverse to the pipeline with oncoming traffic when passed over longitudinally 97

List of Tables

Table 1: Soil groups... 25
Table 2: Calculated values for the soil groups G1 to G4.. 25
Table 3: Calculation values for non-cohesive soils G1, G2 ... 26
Table 4: Calculation values for cohesive soils G3, G4 27
Table 5: Influence coefficient resulting from jacking into loose rock 27
Table 6: Partial safety factors for component resistance ... 29
Table 7: Loads and influence combinations on pipes based on pipe jacking methods – non-steerable methods ... 31
Table 8: Loads and influence combinations on pipes based on pipe jacking methods – steerable methods ... 32
Table 9: Coefficient of the lateral bedding angle .. 36
Table 10: Coefficient \(f \) for considering the lateral soil pressure from traffic loads 38
Table 11: Soil stresses \(p \) resulting from railway-traffic loads ... 39
Table 12: Partial safety factors for influences (construction and operating states) 45
Table 13: Moment and normal force coefficients for bedding angle \(2\alpha = 180° \) (normal case jacking, if the annular space is permanently and fully grouted once jacking is completed) ... 46
Table 14: Moment and normal force coefficients for bedding angle \(2\alpha = 90° \) (special case) .. 46
Table 15: Recommended influencing factor \(f_2,F \) for jacking in solid rock .. 50
Table 16: Moment and normal force coefficients for loads introduced above the foundation soil as per HÖRNUNG & KITTEL (1989) for some examples (support: cos-shaped, radial; load: rectangular \(\beta = 90° \)) ... 52
Table 17: Moment and normal force coefficients for dead weight and water fill as per HÖRNUNG & KITTEL (1989) for some examples (support: cos-shaped, radial; load: rectangular \(\beta = 90° \)) ... 52
Table 18: Required verifications ... 53
Table 19: Minimum wall thickness .. 54
Table 20: Minimum wall thickness for steel pipes .. 55
Table 21: Reduction factor \(\alpha_T \) .. 61
Table 22: Permitted double stress amplitudes for the operational stability verification of steel pipes (corresponds with DS 804 Table 32 notch category KV and Table 33 notch category WI) in N/mm\(^2\), applicable to \(2 \times 10^6 \) load cycles .. 64
Table 23: Calculated value \(\Delta a_{cal} \) based on nominal diameter and pipe material ... 66
Table D.1: Soil classification – group classification of soils for civil engineering purposes (classification of solid rocks) – part 1 .. 87
Table D.2: Soil classification – group classification of soils for civil engineering purposes (classification of loose rock) – Part 2 .. 88
Table D.3: Jacking in loose rock – details on the subsoil required .. 89
Table D.4: Jacking in solid rock – details on the subsoil and bedding angle required .. 90
Table E.1: Permitted tensile forces for PE-80/PE-Xa pipes .. 92
Table E.2: Permitted tensile forces for PE-100 pipes .. 93
Table E.3: Permitted tensile forces and minimum bending radii for steel pipes as per DIN 2460 with CM-lining .. 94
Table E.4: Permitted tensile forces, deviation capacities and curve radii of pipes made from ductile cast iron with BLS sockets and TIS-K .. 95
Table F.1: Case distinction for the effective length as per Figure F.1 .. 96
Table F.2: Case distinction for the effective width as per Figure F.2 .. 97

User Notes

This Standard has been produced by a group of technical, scientific and economic experts, working in an honorary capacity and applying the rules and procedures of the DWA and the Standard DWA-A 400. Based on judicial precedent, there exists an actual presumption that this document is textually and technically correct and also generally recognised.

Any party is free to make use of this Standard. However, the application of its contents may also be made an obligation under the terms of legal or administrative regulations, or of a contract, or for some other legal reason.

This Standard is an important, but not the sole, source of information for solutions to technical problems. Applying information given here does not relieve the user of responsibility for his own actions or for correctly applying this information in specific cases. This holds true in particular when it comes to respecting the margins laid down in this Standard.

1 Scope

This Standard applies to the structural calculation of pipes with a circular cross-section which are installed according to the pipe jacking method in a straight or bending direction in non-cohesive or cohesive soils (loose soils as per DIN 18319) with static force in accordance with Standard DWA-A 125/DVGW GW 304. It also applies to jacking that is done wholly or partially in solid rock, whereby special considerations shall be made.

This Standard can be applied analogously to pipes that are driven with dynamic energy. Unless otherwise mentioned in this standard, it also applies to pipe jacking using related methods with the appropriate adjustments. For pipes installed within a jacking path in an open-cut method of construction in shafts or connecting paths, Standard ATV-DVWK-A 127 applies.

2 Normative References

The following documents cited are required for using this document. With dated references, only the edition referred to applies. However, users of this section of the DWA/DVGW Set of Rules are asked to use the latest editions of the normative documents specified below in each case. For undated references, the last edition of the document referred to applies (including all changes). Listed DIN standards may be a component of the DWA/DVGW Set of Rules.1)

DIN CEN/TS 15223: Plastics piping systems – Valid calculation parameters of buried thermoplastic piping systems

DIN EN ISO 9967: Thermoplastic pipes – Determining deformation behaviour

DIN EN ISO 12162: Thermoplastic materials for pipes and fittings for applications under pressure – Classification, material labelling and overall service (calculation) coefficient

DIN EN 295-1: Vitrified clay pipe systems for drains and sewers – Part 1: Requirements for pipes, fittings and joints

DIN EN 295-3: Vitrified clay pipe systems for drains and sewers – Part 3: Test methods

DIN EN 295-7: Vitrified clay pipe systems for drains and sewers – Part 7: Requirements for pipes and joints for pipe jacking

DIN EN 300: Plates from long, flat, oriented strand boards (OSB) – Definitions, classifications and requirements

DIN EN 312: Particleboards – requirements

1) Dates have generally been omitted (see foreword).